
Presented at ICLR 2019 Debugging Machine Learning Models Workshop

INVERTING LAYERS OF A LARGE GENERATOR

David Bau1, Jun-Yan Zhu1, Jonas Wulff1, William Peebles1,
Hendrik Strobelt2, Bolei Zhou3, Antonio Torralba1

1Massachusetts Institute of Technology,
2IBM Research, 3The Chinese University of Hong Kong

1 INTRODUCTION

The remarkable realism achieved by state-of-the-art Generative Adversarial Networks for natural
images leads us to ask: how can we see what a large GAN is unable to generate? The problem of
mode-dropping — the tendendency of a GAN to give up on modeling significant parts of the target
distribution — is seen as one of the most serious shortcomings of GANs (Goodfellow, 2016; Li &
Malik, 2018), but generated samples provide little insight. A sample reveals what a GAN does, not
what it is unable to do. Therefore, methods for characterizing GAN omissions are needed.

Given a trained generator G : Z→ X, we wish to understand whether any particular image x can be
synthesized by G; that is, we want to understand whether x ∈ range(G), where range(G) denotes
the set of images that can be output by G. The direct way to solve this would be to find an encoder
E : X→ Z that can invert G so that E(G(z)) = z; then we would know that x ∈ range(G) exactly
when x = G(E(x)). Unfortunately, as we shall see, large generators with many layers are not easy
to fully invert: traditional methods do not succeed at constructing an accurate E.

A tractable subproblem can be defined. Decompose G = GF (gj(· · · g2(g1(z)))), where {gi}
represents a few initial layers of G, and GF groups together all the final layers. The decomposition
guarantees range(G) ⊂ range(GF), so if we can identify images x /∈ range(GF), we will know
those images are also absent from range(G). Therefore, in this paper we develop a method for
inverting the final layers of a large generator. We seek an encoder EF : X→ Zj such that

EF (GF (zj)) = zj (1)

When x 6= GF (EF (x)), then x /∈ range(GF), and therefore x /∈ range(G). Furthermore, the
differences between x and GF (EF (x)) can provide insight about the nature of the limitations of
the GAN. For example, Figure 1 illustrates pairs of images of bedrooms and churches alongside

original image x Gf(Ef(x)) original image Gf(Ef(x))

x g
en

er
at

ed
 b

y
GA

Ns
 o

rig
in

al
ly

re
al

 p
ho

to
s,

ch
ur

ch
 m

od
el

re
al

 p
ho

to
s,

be
dr

oo
m

 m
od

el

original image Gf(Ef(x))

Figure 1: Using inverses to debug the limitations of a generator. The first row shows nearly perfect
inversions of complex GAN-generated images. The second and third rows show that reconstructions
of natural photos cannot perfectly replicate all the objects and styles in a real scene.

1

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

their reconstructed inversions, showing x next to GF (EF (x)), applying method (f) described in
this paper. The first row illustrates images that can be generated exactly (where GF (EF (x)) is
indistinguishable from x), and the last two rows illustrate natural images that cannot be generated
exactly by the generator. The inversions suggest that the analyzed church generator cannot represent
people wearing colorful clothing, automobiles, or certain architectural styles. The bedroom generator
cannot represent certain types of wall decorations, hanging lights, or dresser drawers.

Previous explorations of inversions of GAN generators have found that inversions can be used to
explore the range of a GAN (Zhu et al., 2016); that for a DCGAN left-inverses can be computed to
high precision (Lipton & Tripathi, 2017); and that inversions of a GAN for glyphs can reveal specific
strokes that the generator is unable to generate (Creswell & Bharath, 2018). While previous work
has investigated inversion of 5-layer DCGAN generators, we find that when moving to a 15-layer
Progressive GAN, good inversions are more difficult to compute. In the current work, we develop a
new inversion method that is effective for these larger GANs.

2 METHODS

In our setting, we invert a Progressive GAN (Karras et al., 2018) trained to an output resolution
of 256 × 256, which consists of 15 nonlinear convolution layers. The generator maps a normally
distributed random 512-dimensional latent to an output RGB image. Within the generator, every pixel
of every latent layer is normalized to lie on the unit hypersphere before being convolved.

We test the following inversion methods.

Method a: Direct optimization of z. Lipton & Tripathi (2017) describe a direct optimization

z∗ = argmin
z

dI(x, G(z)) (2)

They found that this straightforward approach yields good results when inverting DCGAN. (They
further achieved better results if boundaries are avoided, but that technique is unavailable to us since
the latent space of a Progressive GAN has no boundaries.) We find slightly improved results by
choosing an image similarity metric dI that adds both L1 distance in pixels and in a perceptual feature
space given by a pretrained VGG; we report results using this perceptual dI .

Method b: Direct learning of E. Another natural solution is to learn a deep network for E by
minimizing expected reconstruction losses over generated images:

LL(E,G) ≡ Ez[dL(z, E(G(z)))] (3)
LR(E,G) ≡ Ez[dI(x, G(E(x))) | x = G(z)] (4)

E(b) = argmin
E

(LL(E,G) + λLR(E,G)) (5)

This minimizes a distance dL between true and reconstructed latent vectors together with minimizing
pixel reconstruction loss. (Since Progressive GAN normalizes away the magnitude of z, we use cosine
similarity dL(z1, z2) = 1− (z1 · z2)/(||z1|| · ||z2||), which is invariant to ||z||.) The hyperparameter
λ determines the balance between reconstructing latents and pixels (we set λ = 1).

Method c: Optimization of z after initializing with E(x). This is the method used in Zhu et al.
(2016). By initializing method (a) using a E(b)(x), we can achieve improved results. For smaller
generators, Zhu et al. (2016) found that this method performs well.

Method d: Learning of E by layers. Instead of learning a network to invert G all at once, we can
decompose G(z) = GF (g4(g3(g2(g1(z))))) into layers; then we can apply method (b) on each of
the smaller generators gi separately. (For our 15-layer generator, g1 through g4 represent the first four
nonlinear convolutions; and GF contains layers 5-15 in one group.) That is, we learn e∗i such that:

LL(e, gi) ≡ Ez[dL(ri−1, e(gi(ri−1)))] where ri−1 = gi−1(· · · g1(z) · · ·) (6)
LR(e, gi) ≡ Ez[dL(ri, gi(e(ri)))] where ri = gi(· · · g1(z) · · ·) (7)

e∗i = argmin
e

(LL(e, gi) + λLR(e, gi)) (8)

E = e∗1(e
∗
2(e

∗
3(e

∗
4(e

∗
F (x))))) (9)

2

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

re
co

ns
tr

uc
te

d
z

co
m

po
ne

nt
s

re
co

ns
tr

uc
te

d
la

ye
r4

 fe
at

ur
es

re
co

ns
tr

uc
te

d
pi

xe
l c

ha
nn

el
s

original image
(goal)

baseline (a)
optimize z

baseline (b)
learn E directly

ablation (d)
layered E alone

ablation (e)
layered E then z

our method (f)
layered E then r

ge
ne

ra
te

d

n/a

re
al

 p
ho

to
ev

al
ua

tin
g

re
co

ns
tr

uc
tio

ns
 o

f s
am

pl
e

of
 g

en
er

at
ed

 im
ag

es
ev

al
ua

tio
n

re
co

ns
tr

uc
te

d
pi

xe
l c

ha
nn

el
s

baseline (c)
direct E then z

Figure 2: Comparison of methods to invert the generator of Progressive GAN trained to generate
LSUN church images. Each of the five methods is described in the text; methods (a) (b) and (c)
are baselines, and methods (d), (e), and (f) are variants of our method with different properties. At
top, we evaluate behavior on GAN-generated images. Accuracy of reconstructed z, layer4, and
reconstructed pixels based on a sample of 100 images are shown for each method. Note that method
(f) achieves effectively perfect reconstructions of GAN-generated images. Below, we apply each of
the methods on a natural non-GAN-generated image.

This method of inverting a network by layers is an application of the classic observation (Hinton &
Salakhutdinov, 2006) that a network with many layers can often be trained more easily by pretraining
the individual layers separately. The results can be further improved by using this composed network
E as an initialization for method (b) and then fine-tuning this composed encoder together. Denote
this fine-tuned result as E(d).

Method e: Optimization of z after applying (d). Following the idea of method (c) again, we can
use E(d)(x) as an initialization for method (a); this direct optimization of z with smart initialization
is reported as method (e).

Method f: Optimization of r4 after applying (d). Motivated by the observation that layers of
a GAN generator contain nontrivial semantics (Bau et al., 2019), we now turn to the tractable
subproblem of finding an EF that inverts GF . As discussed in the introduction, the range of G is
covered by the range of GF , so any inability of GF to produce an output corresponds to an output G
will also fail to produce. To compute an accurate EF , We found best results initializing with E(d)(x)

3

Presented at ICLR 2019 Debugging Machine Learning Models Workshop

and optimizing r4 indirectly by learning residuals on other layers:

z0 ≡ E(d)(x) (10)

z4 ≡ g4(δ3 + g3(δ2 + g2(δ1 + g1(z0)))) (11)

z∗4 = argmin
z4

(
dI(x, G(f)(z4)) +

∑
i

λi||δi||2
)

(12)

That is, we search by optimizing over δi rather than following gradients of z4 directly. The hy-
perparameters λi prevent the residuals from growing too large (we set λi = 1). This optimization
over residuals provides an implicit regularizer over z4 that favors values that are more similar to
values produced by the initial layers gi. This method of optimizing residuals produces very accurate
recovery of the true layer4 latent.

3 RESULTS AND DISCUSSION

Figure 2 compares the six methods. Our new methods (d), (e), and (f) achieve better reconstructions
of both latents and pixels than previous methods (a), (b), and (c). Note that method (f) achieves
reconstructions of latents and pixels that are nearly perfect.

The nearly-perfect reconstructions of method (f) allow us to precisely identify images that are outside
the range of G by using that method to reconstruct an arbitrary image. We can conclude that wherever
reconstruction fails, it is almost certainly due to a failure of G to generate the image rather than a
failure of E. Therefore, although these methods are trained only on images that are generated by G,
our ability to solve that problem completely gives us a useful tool for understanding the limitations of
G outside its range. By comparing natural photos with imperfect reconstructions as in Figure 1, we
can identify specific objects, parts, and styles that a generator is unable to produce.

REFERENCES

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Zhou Bolei, Joshua B. Tenenbaum, William T. Freeman,
and Antonio Torralba. Gan dissection: Visualizing and understanding generative adversarial
networks. In ICLR, 2019. 3

Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial
network. IEEE transactions on neural networks and learning systems, 2018. 2

Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016. 1

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006. 3

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. In ICLR, 2018. 2

Ke Li and Jitendra Malik. On the implicit assumptions of gans. arXiv preprint arXiv:1811.12402,
2018. 1

Zachary C Lipton and Subarna Tripathi. Precise recovery of latent vectors from generative adversarial
networks. arXiv preprint arXiv:1702.04782, 2017. 2

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual manipula-
tion on the natural image manifold. In ECCV, 2016. 2

4

